加载笔记内容...
加载笔记内容...
卷积神经网络(Convolutional Neural Networks, CNN) 的突破性在于其独特的层次化特征学习能力。核心组件包括:
1# 典型CNN构建示例(PyTorch)
2model = nn.Sequential(
3 nn.Conv2d(3, 16, kernel_size=3, padding=1),
4 nn.ReLU(),
5 nn.MaxPool2d(2),
6 nn.Conv2d(16, 32, kernel_size=3, padding=1),
7 nn.ReLU(),
8 nn.MaxPool2d(2),
9 nn.Flatten(),
10 nn.Linear(32*56*56, 10)
11)
1# RPN实现伪代码
2class RPN(nn.Module):
3 def __init__(self, in_channels):
4 self.conv = nn.Conv2d(in_channels, 512, 3, padding=1)
5 self.cls_layer = nn.Conv2d(512, 9*2, 1) # 9 anchors, 2 scores
6 self.reg_layer = nn.Conv2d(512, 9*4, 1) # 4 coordinates
YOLOv5 的主要改进:
SSD(Single Shot MultiBox Detector) 的关键设计:
ViT 的预处理流程:
1# ViT的Patch Embedding实现
2class PatchEmbed(nn.Module):
3 def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
4 super().__init__()
5 self.proj = nn.Conv2d(in_chans, embed_dim,
6 kernel_size=patch_size,
7 stride=patch_size)
8
9 def forward(self, x):
10 x = self.proj(x).flatten(2).transpose(1, 2)
11 return x
指标 | Faster R-CNN | YOLOv5s | SSD300 |
---|---|---|---|
mAP (COCO) | 37.9% | 36.7% | 29.5% |
FPS (T4 GPU) | 12 | 123 | 46 |
参数量 | 41M | 7.2M | 24M |
1# TensorRT量化示例
2builder = trt.Builder(TRT_LOGGER)
3network = builder.create_network()
4parser = trt.OnnxParser(network, TRT_LOGGER)
5config = builder.create_builder_config()
6config.set_flag(trt.BuilderFlag.INT8)
7config.int8_calibrator = calibrator
8engine = builder.build_engine(network, config)
展望:当前模型架构呈现CNN与Transformer融合的趋势,如ConvNeXt通过改进传统CNN达到Swin Transformer的性能。未来,自适应计算(Adaptive Computation)和神经架构搜索(NAS)将继续推动模型效率的提升,而多模态预训练大模型将重塑产业应用格局。工程师需要持续跟踪基础理论进展,同时注重实际部署中的工程优化,才能在AI落地浪潮中保持竞争力。